skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kremer, Gereon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Enea, Constantin; Lal, Akash (Ed.)
    Abstract We study satisfiability modulo the theory of finite fields and give a decision procedure for this theory. We implement our procedure for prime fields inside the cvc5 SMT solver. Using this theory, we construct SMT queries that encode translation validation for various zero knowledge proof compilers applied to Boolean computations. We evaluate our procedure on these benchmarks. Our experiments show that our implementation is superior to previous approaches (which encode field arithmetic using integers or bit-vectors). 
    more » « less
  2. Moving toward a full suite of proof-producing automated reasoning tools with SMT solvers that can produce full, independently checkable proofs for real-world problems. 
    more » « less
  3. Blanchette, Jasmin; Kovacs, Laura; Pattinson, Dirk (Ed.)
    Proof production for SMT solvers is paramount to ensure their correctness independently from implementations, which are often prohibitively difficult to verify. Historically, however, SMT proof production has struggled with performance and coverage issues, resulting in the disabling of many crucial solving techniques and in coarse-grained (and thus hard to check) proofs. We present a flexible proof-production architecture designed to handle the complexity of versatile, industrial-strength SMT solvers and show how we leverage it to produce detailed proofs, including for components previously unsupported by any solver. The architecture allows proofs to be produced modularly, lazily, and with numerous safeguards for correctness. This architecture has been implemented in the state-of-the-art SMT solver cvc5. We evaluate its proofs for SMT-LIB benchmarks and show that the new architecture produces better coverage than previous approaches, has acceptable performance overhead, and supports detailed proofs for most solving components. 
    more » « less
  4. Fisman, Dana; Rosu, Grigore (Ed.)
    cvc5 is the latest SMT solver in the cooperating validity checker series and builds on the successful code base of CVC4. This paper serves as a comprehensive system description of cvc5’s architectural design and highlights the major features and components introduced since CVC4 1.8. We evaluate cvc5’s performance on all benchmarks in SMT-LIB and provide a comparison against CVC4 and Z3. 
    more » « less